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A B S T R A C T   

West Pearl River Delta (WPRD) is sinking as a result of the jointed effect of natural and anthropogenic factors. 
Land subsidence has increasingly become a concern because of tremendous population growth and rapid ur-
banization over this region in the last few decades. In this study, sixty-seven Sentinel-1 images, acquired between 
2016 and 2021, were analyzed with the persistent scatterer interferometry technique (PSI), to monitor and reveal 
the ground subsidence characteristics in the WPRD. It is found that the overall vertical deformation velocities 
observed in the WPRD ranged between − 70 mm/year and 10 mm/year. Three subsidence bowls were found in 
the study area (Gaolan island of Zhuhai, the junction area of Zhuhai and Zhongshan, and the junction area of 
Zhongshan and Jiangmen). The spatial–temporal subsidence characteristics have been analyzed. It is discovered 
that the ground subsidence is mostly dispersed in Quaternary deposits and is highly relevant to the thickness of 
sediments, indicating that soft soil consolidation is one of the primary causes contributing to land subsidence. 
Furthermore, land use maps for 2016 and 2021 were generated using Landsat-8 images for the investigation on 
the relationship between land subsidence and land use. The results obtained from analysis demonstrated that the 
rapid subsiding areas mainly occurred in the land-use classes as follows: aquaculture, urban land, and agricul-
tural land. The land use conversion pattern with more significant anthropogenic influence usually causes a higher 
subsidence rate. In addition, based on soft soil thickness, groundwater exploitation, land use, elevation, and 
strata lithology, a Random Forest Regression (RFR) model was used to predict subsidence rates (R2 = 0.631, 
RMSE = 2.7 mm/year). The importance of these influencing factors of land subsidence was calculated based on 
the RFR algorithm. The results indicated that soft soil thickness, elevation, groundwater exploitation, strata li-
thology, and landcover type are the most significant factors affecting subsidence. The applicability of geological 
data and land-use history for land subsidence prediction has been demonstrated with the use of the RFR 
algorithm.   

1. Introduction 

Ground subsidence is a very serious issue in coastal areas where 
several river deltas across the world are vulnerable to it. (Galloway 
et al., 2016). Continuous subsidence can also aggravate the risks of 
coastline erosion, flooding (Zhu et al., 2020), tidal inundation or wet-
lands loss, and sea-level rise, causing substantial economic loss and 
threat to lives (Chen et al., 2012). Therefore, continuous monitoring and 
analysis of ground subsidence are crucial for assessing the risk and 
ensuring the sustainable and stable development of coastal delta 
regions. 

The traditional geodetic methods for monitoring ground deforma-
tion, e.g. Global Navigation Satellite System (GNSS) and leveling, are 
constrained by their poor spatial coverage and resolution. Interfero-
metric Synthetic Aperture Radar (InSAR) provides a range of substantial 
advantages for high spatial resolution and regional scale deformation 
measurements. InSAR has already demonstrated its capability for 
monitoring land deformation in various applications, for example, urban 
subsidence monitoring (Du et al., 2021; Wang et al., 2012), volcanic and 
earthquake studies (Wang et al., 2019a), groundwater exploitation 
(Bakr, 2015), slope stability monitoring (Kuang et al., 2022) and sub-
sidence induced by mining activities (Yang et al., 2016). 
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Pearl River Delta (PRD), one of China’s most dynamic and urbanized 
regions, has the greatest urban agglomerations in the world with 
approximately 70 million in population, and exceeding 10 trillion RMB 
(about $1.47 trillion) in the gross domestic product (GDP). Since 1850, 
the PRD has obtained 1160 km2 of new land. During this period, the PRD 
has undergone intensive anthropogenic activities, including infrastruc-
ture construction, groundwater withdrawal, and land reclamation. The 
southern part of PRD is in low-lying land where the geological envi-
ronment is fragile due to the mutual influence of oceans and land. The 
dense river network, abundant aquaculture and anthropogenic activities 
(e.g. groundwater extraction and land reclamation) in this area can 
generate varying degrees of subsidence. In addition, most of these re-
gions are located at or below sea level (see the white area in Fig. 1a), and 
the joint effect of sea level rise and ground subsidence can further 
intensify the risk of coastal inundation. Therefore, it is necessary to 
analyze land subsidence in the PRD systematically to reduce the prob-
ability of a subsidence disaster. 

InSAR has already been applied for investigating the land deforma-
tion phenomenon at PRD as reported in a number of previous studies, 
including Wang et al. (2012), Xu et al. (2016), Ng et al. (2018), Ma et al. 
(2019), Du et al. (2020), Li et al. (2020), etc. These studies have been 
conducted on various places in PRD using SAR data acquired by different 
satellites. Their results suggest that the land subsidence in PRD is related 
to soft soil layer compaction, urban development, land reclamation, 
subway construction, geological settings, and land use (aquaculture and 
agricultural areas). 

In this paper, the land deformation in the West PRD (WPRD) is 
investigated using Time-series InSAR (TS-InSAR) analysis. A summary of 
relevant InSAR studies for WPRD can be found in Table 1. Recent land 
subsidence studies have suggested that land subsidence could show a 
relevant response to the change in land-use (Minderhoud et al., 2018; 
Umarhadi et al., 2022). The effect of different land cover types and land- 
use change on the land subsidence, especially for the WPRD, has been 
rarely studied but is of great interest in the understanding of the subsi-
dence phenomenon. More importantly, there are few studies on the 
quantitative analysis of the significance of multiple contributing factors 
to land subsidence. As a result, it is necessary to further analyze the 
importance of each subsidence related influencing factor to determine 
all effective contributing factors for WPRD. In this work, the PSI tech-
nique has been carried out to investigate the land deformation in the 
WPRD with 67C-band Sentinel-1A (S1) images from 2016 to 2021. The 
combination of InSAR and optical remote sensing technology was then 
used to investigate the features of land deformation in the various land- 
use types and land-use change in the WPRD. Natural factors and 

anthropogenic activities of the study area have also been assessed to 
examine the impacts on land subsidence. Finally, according to the main 
land subsidence factors, a land subsidence prediction model is estab-
lished by using the Random Forest Regression (RFR) approach, and the 
importance of each factor is evaluated. 

2. Study area and datasets 

2.1. Geological background 

The WPRD is located at the West Bank of the Pearl River in Guang-
dong Province, including the Zhuhai-Zhongshan-Jiangmen (ZZJ) eco-
nomic circle (Fig. 1a). The study area has a superior geographical 
location, which is adjacent to Macau on the south, connected to 
Guangzhou and Foshan area on the north, and to Hong Kong on the east. 
In the WPRD, Zhuhai city has the greatest marine area (about 6,000 

Fig. 1. (a) Location of WPRD (red star at the upper left sub-figure). The red dotted box and black lines represent the study area and district boundary, respectively; 
(b) the strata lithology in the WPRD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Summary of relevant studies using InSAR technologies over West PRD (WPRD).  

Reference Location Method SAR data Key results/main 
causes of 
subsidence 

(Chen 
et al., 
2012) 

Greater Pearl River 
Delta 

Improved 
PSI 

ENVISAT 
C-band 

Urban expansion; 
reclamation; the 
distribution of 
river and 
Quaternary 
sediments 

(Ma et al., 
2019) 

Guangdong–Hong 
Kong–Macao 
Greater Bay Area 

MT-InSAR Sentinel- 
1C-band 

Quaternary 
sediment 
consolidation; 
Groundwater 
extraction; 
artificial loading 

(Du et al., 
2020) 

Coastal Areas of 
Guangdong 

SBAS 
InSAR and 
TCP InSAR 

PALSAR L- 
band 

Quaternary 
sediment 
thickness; 
aquaculture 
areas 

(Li et al., 
2020) 

Pearl River Delta SBAS 
InSAR 

PALSAR L- 
band 

The thickness of 
soft soils; 
geological 
evolution; 
reclamation; 
pumping 
groundwater for 
aquaculture  
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km2), the most islands (about 150), and the longest coastline (about 600 
km). The terrain of this region is quite flat with an elevation below 50 m 
in most of the region (Fig. 1a). Because of the effect of subtropical 
monsoon climate, WPRD usually receives abundant rainfall from April 
to September, with an average annual rainfall varying from 1600 to 
2000 mm. During this period, the study area often suffers from typhoons 
and floods. 

The Geologic setting map of WPRD (Fig. 1b) shows that the Qua-
ternary sediments are the dominant geological structure, with the 
thickness varying from 10 m to over 40 m. Quaternary is the latest 
period of the Cenozoic, including the Pleistocene and Holocene. In the 
PRD plain, soft soil is mainly-three transgressive periods of sediments 
from Upper Pleistocene to Holocene (32000 to 22000 years ago, 7500 to 
5000 years ago, and 2500 years ago, respectively). According to the 
formation time, origin, and engineering geological properties, the soft 
soil can be divided into three layers with other non-transgressive de-
posits: the third, the second, and the first soft soil layer from bottom to 
top (Wang et al., 2019b). Three soft soil layers are generally distributed 
in the southern part of the Panyu district in Guangzhou, the southeast 
part of Foshan, the eastern part of Jiangmen, and the northern part of 
Zhongshan city. At the same time, other regions mainly develop the first 
and second soft soil layers (Lu, 2006). 

2.2. Datasets 

Sixty-seven ascending S1 images acquired from 5 January 2016 to 13 
July 2021 were used in this study. The average incidence angle for all 
these S1 images, which were acquired in ascending orbit, is 39.5◦ (Track 
011). The imaging mode is the Interferometric Wide Swath (IW) mode, 
and the polarization mode is VV. The 1-arc second Shuttle Radar 
Topography Mission (SRTM) DEM data (Rabus et al., 2003) was used to 
remove the topographic phase from InSAR signals. The reference image 
was selected as the one collected on September 15th, 2018. Fig. 2 shows 
the distribution of the perpendicular and temporal baselines of 66 
interferometric pairs. In addition to the SAR datasets, the land-use 
classification maps for 2016 and 2021 were generated using median 
composited from all the Landsat-8 surface reflectance images in 2016 
(28 images) and 2021 (31 images) via Google Earth Engine (GEE) cloud- 
based platform. 

3. Methodology 

3.1. Time-series InSAR (TS-InSAR) analysis 

TS-InSAR technique was conducted to measure the land subsidence 
in the WPRD with S1 images. The differential interferograms stacks were 
generated using the InSAR Scientific Computing Environment (ISCE) 
software (Rosen et al., 2012). Then GEOS-PSI, an in-house developed 
persistent scatter interferometry (PSI) analysis software, was performed 
to study the land deformation evolution at WPRD (Ng et al., 2012a; Ng 
et al., 2012b). The basic procedures for the PSI analysis used in this work 
were as follows. Firstly, the Persistent Scatterers candidates (PSC) were 
selected based on the amplitude dispersion index (ADI), and all pixels 
with ADI < 0.4 were selected (Ferretti et al., 2001). An initial reference 
network was generated using triangulation network for PSC with ADI <
0.25. The least-squares ambiguity decorrelation approach (LAMBDA) 
was used to compute the model parameters at each arc of the reference 
network. Then, the reliability of the estimated model parameters was 
assessed by the ensemble phase coherence (Ferretti et al., 2001). The 
ensemble phase coherence threshold of 0.6 was used because of the 
availability of large image stack (Colesanti et al., 2003). Spatial inte-
gration was subsequently conducted using robust fitting. The PS can-
didates, that are not selected for the construction of the reference 
network, were included into the network using the adaptive estimation 
strategy (Ng et al., 2012b). The spatial–temporal filtering approach was 
utilized to correct the atmospheric and orbital errors. The unmodeled 
deformation components were then extracted from the unwrapped re-
sidual phase. Finally, the time-series deformation results were derived 
by joining the linear deformation (modeled) and the non-linear defor-
mation (unmodeled). The details of the TS-InSAR processing flow are 
described in the Supplementary section (see supplementary S1.1). 

The displacement time series in the WPRD are measured along the 
radar’s line of sight (LOS) direction. Since only the ascending images 
were available, it is assumed that the majority of deformation in the 
WPRD, especially in the coastal area, is in the vertical direction (Du 
et al., 2020). Hence, the horizontal displacement is ignored here, and the 
deformation measured in the LOS direction is thus directly projected to 
the vertical direction. 

3.2. Land-use classification 

The Random Forest Classifier (RF) (Breiman, 2001), a supervised 
machine learning algorithm widely used in classification problems, was 
applied to generate the land-use classification maps using the GEE 
platform. The CFMASK algorithm (Foga et al., 2017) was used for pre- 
processing and to mask the cloud for the Landsat-8 SR data. The me-
dian composite method was then used to generate the cloud-free com-
posite images of the study area. The spectral features, i.e., Red, Green, 
Blue, NIR, SWIR1, and SWIR2 bands were selected as the input feature 
variables. Spectral indexes including the NDVI, the NDBI, and the NDMI 
were computed and included in the data classification processing to 
enhance the discrimination of various land-use types. The reference data 
were collected by visual interpretation from Google Earth, and the 
samples were randomly selected over the study area. A total of 675 
samples for each Landsat image were chosen for all classes and were 
randomly split into 2 parts: 70 % and 30 % for training dataset and 
validation dataset, respectively. The training data was used for training 
a random forest with 100 decision trees. A total of 7 land classes were 
formed: urban, agriculture, aquaculture, forest, water, bare land, and 
mangroves. The procedure was repeated to generate two consistent 
land-use maps 2016 and 2021. Finally, the raster image was exported to 
vector format for superposition analysis with InSAR results. 

3.3. Land subsidence modeling 

According to the InSAR results, the influencing factors of subsidence 

Fig. 2. Temporal and perpendicular baseline distribution of S1 dataset. The 
yellow dot represents the reference image. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Z. Liu et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 118 (2023) 103228

4

were determined by combining regional topographic and geological 
characteristics and served as the independent variables, including the 
thickness of soft soil, groundwater exploitation, land-use history data 
(1980, 1995, 2000, 2005, 2010, 2015, 2018, 2016, 2020 and 2021), 
elevation and strata lithology. The subsidence rate of PS points in this 
study was used as the dependent variable. In addition to the generated 
land use for 2016 and 2021 in this study, other land-use history data 
were obtained from the Chinese Academy of Sciences with a spatial 
resolution of 30 m (Xu et al., 2018). The elevation data was acquired 
from the SRTM DEM. These factors and InSAR-derived subsidence rates 
were imported into the GIS system to establish the database. A total of 
1,749,141 samples were divided: 70 % of samples for training and the 
remaining 30 % for validation. In this study, the number of trees was set 
to 1000 based on Grid Search with Cross Validation. The learning per-
formance was assessed using 10-fold cross-validation and the accuracy 
of the model was quantitatively evaluated by calculating the root mean 
square error (RMSE) of the validation dataset (Umarhadi et al., 2022). In 
order to assess the significance of each input variable to the subsidence 
model, the importance of each influence factor was calculated based on 
Gini importance (mean decrease impurity) (Louppe et al., 2013). The 
data processing workflow used in this study is shown in Fig. 3. See 
Supplementary S1.2 for detailed information of the land subsidence 
model construction. 

4. Results 

4.1. InSAR results 

A subsidence rate map in the WPRD generated from the S1 images 
between 2016 and 2021 is shown in Fig. 4a. An average subsidence 
velocity of 0.2 mm/year and the standard deviation of 2.8 mm/year are 
obtained (Fig. 4b). The PS points with subsidence rates ranging from 10 
to − 10, − 10 to − 30, and − 30 to − 50 mm/year take account for 95.6 %, 
3.8 %, and 0.5 % of all PS points, respectively. 

The results show that most parts of the study areas remain stable. 
Three subsidence bowls were found in the study region (see Fig. 4a): (1) 
the junction of Zhuhai and Zhongshan, with an average subsidence rate 
of − 16 mm/year; (2) the junction of Jiangmen and Zhongshan, with a 
rate of about − 13 mm/year; (3) the Gaolan island of Zhuhai, the most 
severe settlement in the reclamation regions (in areas between the 1979 
and 2020 coastlines marked in Fig. 4a), and the peak settlement rate 

observed here is − 87.3 mm/year. In addition, small-scale subsidence 
was also found in some areas, for example, the Xiangzhou district of 
Zhuhai (Fig. 4a). Three points (P1, P2, P3) were selected to study their 
deformation time series (see Fig. 4c). It is found that the linear 
displacement occurs at the three points. 

4.2. InSAR accuracy assessment 

To evaluate the accuracy of the subsidence results, the leveling 
benchmarks acquired in 2019 from Li et al. (2021) were collected. These 
benchmarks were in three main subsidence regions in Zhuhai. Fig. 5 
depicts the locations of these leveling points. Since the PS pixels and 
leveling benchmarks are not located exactly same place, it is necessary 
to minimize the effect of the geolocation errors between the two datasets 
such that the two techniques are comparable. The buffer zones of 60 m 
were established for each leveling benchmark, all PS pixels within the 
same buffer were collected and the deformation value was obtained by 
averaging the deformation value at these PS pixels (Table 2). The 
maximum absolute difference obtained is approximately 4.7 mm/year. 
To further verify the PSI results, a field survey is conducted in the WPRD, 
including P1, P2 and P3. P1 is located in the reclamation area. Most of 
the nearby areas are paddy fields and aquaculture ponds, so the subsi-
dence is most likely caused by groundwater extraction for crop irrigation 
and aquatic products. P3 is located in Da’ao town in Jiangmen, where 
wall cracking has occurred in many rural residential areas due to land 
subsidence. The field survey suggests that the location with cracks on 
infrastructures found agrees well with the subsidence regions from the 
InSAR result (Fig. 6). 

4.3. Land-use classification and change analysis 

Fig. 7 shows the Landsat-8 derived land cover classification maps in 
2016 and 2021. The overall accuracies of classification maps based on 
the confusion matrix are 92.8 % and 91.3 %, respectively. The land-use 
transition matrix during this period is shown in Table S1. The findings 
indicate that some changes have taken place in the land-use patterns 
between 2016 and 2020. Referring to the land-use transition matrix, it is 
found that the most significant change occurred in the expansion of 
urbanized areas, reflecting the growing population and urbanization of 
the WPRD. The area of urban land has increased by 166.44 km2, and the 
predominant origin of the increase is agricultural land. The main pattern 

Fig. 3. Data processing workflow.  
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of transformation of barren land was mostly converted into urbanized 
and agricultural land. The area of agricultural and forest land has 
decreased by 64.72 km2 and 51.03 km2 respectively. Table S1 shows a 
reduction in the area of aquaculture, mainly converted to urban and 
agricultural areas. Moreover, it is noteworthy that the area of mangrove 
wetlands has increased slightly, and the mangroves are mainly distrib-
uted on Qi’ao Island in Zhuhai city (Fig. 7). 

4.4. Subsidence model estimation 

Based on the above-selected input feature parameters, the subsi-
dence model was established (Fig. 8). A good agreement between the 
modeled subsidence rates and the InSAR results has been observed with 
similar spatial patterns. All three subsidence bowls have been observed 
from the modeled subsidence. The RMSE between the InSAR observa-
tions and predicted subsidence rates is 2.7 mm/year calculated from 
validation samples (R2 = 0.631) and their absolute difference ranges 
from 0 to 5 mm/year, which accounted for 94.6 % of the validation 
samples. The importance of each variable is calculated as shown in 
Fig. 9. Three most significant causes of land subsidence, in order of 
decreasing significance, were found using the RFR algorithm to be the 
thickness of soft soil, elevation, groundwater exploitation, and strata 
lithology, followed by different land-use types. Aquaculture, urban land, 
and agriculture are the most significant land-use related factors affecting 
subsidence. Bare land and forest areas were the less important land-use 
related factors, where the influence from the rest of the land-use types is 
almost neglectable. 

5. Discussion 

5.1. Comparison of subsidence rates between 2006 and 2021 

A comparison between the deformation measurements obtained in 
this and previous works has been conducted. In general, the magnitudes 
and patterns of deformation between 2016 and 2021 obtained in this 
work agree with the historical deformation patterns from previous 
studies, i.e., between 2006 and 2011 (Chen et al., 2012; Du et al., 2020; 
Li et al., 2020), and between 2015 and 2017 (Ma et al., 2019). It can be 
clearly observed that continuous subsidence occurred in the PRD from 
2006 to 2021. The three large subsidence bowls have been found in all 

the locations in these studies. However, there are slight differences in 
the magnitude of deformation observed. Both Du et al. (2020) and Ma 
et al. (2019) suggested that the maximum subsidence rate occurred in 
the reclamation area located in Zhuhai (P1), which is consistent with 
this study. But compared to the peak subsidence rates from these studies 
(-112.3 mm/year and − 150.9 mm/year), slightly lower subsidence rate 
has been observed in this work (-87.3 mm/year). There are three 
possible reasons that can cause the inconsistency in the peak subsidence 
rate observed: (1) higher average coherence is expected with a relatively 
short time and hence more measurement points were detected in Ma 
et al. (2019); (2) ALOS-1 PALSAR data have a longer wavelength to 
identify greater subsidence in Du et al. (2020); (3) the settlement has 
been decreasing gradually due to a longer time for the consolidation of 
reclamation materials. Li et al. (2020) suggested that the most serious 
subsidence was found in the junction of Jiangmen and Zhongshan (P3), 
but this subsidence rate (<-70 mm/year) is much lower than the sub-
sidence rate at the reclamation area in Zhuhai (P1) according to Du et al. 
(2020), Ma et al. (2019), and this study. This suggests that the subsi-
dence in settlement bowls corresponding to P1 should be the most sig-
nificant amongst the three, which is consistent with this study. In 
addition, Chen et al. (2012), Du et al. (2020), and Li et al. (2020) 
demonstrated that the junction of Zhongshan and Jiangmen (P3) expe-
rienced larger land subsidence than the junction of Zhuhai and Zhong-
shan (P2), which is contrary to the results of Ma et al. (2019) and this 
study. This could indicate that the land subsidence in the junction of 
Jiangmen and Zhongshan probably has a trend of mitigation (2006 ~ 
2011 to 2016 ~ 2021). 

5.2. The relationship between land subsidence and the soft soil thickness 

The soft soil map of WPRD is shown in Fig. 10b, with the borehole- 
derived soft deposit thickness data provided by Lai et al. (2021) and Lu 
(2006). The soft soil is mostly found near the river and in coastal regions. 
As can be observed, there are six categories for the thickness of soft soil: 
0–5 m, 5–10 m, 10–20 m, 20–30 m, and > 40 m. The thickness of soft soil 
varies in different regions, which is thin when close to the mountain, but 
thick when close to the river and seas (see Fig. 10b). The soft soil layers 
are mainly composed of clayey soil, muck, and muck soil, which are 
notable for their high water content, strong compressibility, and poor 
shear strength (Lu, 2006). Therefore, the self-consolidation and 

Fig. 4. (a) Subsidence rate map of the 
WPRD overlaid on the Sentinel-2 optical 
image. Black dotted polygons represent 
the three primary subsidence bowls. The 
black triangle indicates the position of 
the reference point. Blue and red lines 
indicate the coastal lines in 1979 and 
2020, respectively. P1, P2, and P3 are 
the three points in the corresponding 
subsidence bowls that are chosen for 
time-series analysis; (b) histogram plot 
of subsidence rate; (c) InSAR-measured 
subsidence time-series at P1, P2, and 
P3 in Fig. 4a. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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compaction of soft soil and the long-lasting buildings and infrastructure 
loading can cause land subsidence. 

To analyze the influence of soft soil thickness to subsidence, a 
quantitative analysis has been conducted to investigate the connection 
between land subsidence and soft soil thickness. The histogram of the 
subsidence rates at different soft layer thicknesses was calculated. The 
results are shown in Fig. 10d. It is found that subsidence is mostly 
localized in the soft soil layers, and severe subsidence (<-20 mm/year) 
mainly occurred in areas with soft soil thickness>40 m. Additionally, a 
superimposed analysis of the different thicknesses of soft soil and land 
subsidence is conducted (Table 3). Correlation between subsidence rate 

and soft soil thickness has been observed. The association between 
subsidence rate and soft layer thickness for various land-use types was 
thus investigated using statistical regression analysis (see Fig. 10e). The 
number at the end of each interval of soft layer thickness (i.e., 5, 10, 20, 
30, 40, and 50 m) was selected to evaluate the correlation. A quadratic 
polynomial expression was established through the comparison of the 
linear and nonlinear relationship between them. Based on least-squares 
estimation, the regression coefficients at different land-use classes were 
calculated and evaluated by a hypothesis test. The determination coef-
ficient R square (95 % confidence level) was employed to estimate the 
goodness of fit (Fig. 10e). The results suggest that land displacement is 
highly related to the distribution of soft soil in the WPRD and greater soft 
soil thickness leads to larger subsidence rates. 

5.3. The relationship between groundwater exploitation and subsidence 

According to the geological survey (Wang et al., 2019b; Zhang, 
1997), there are two main types of groundwater systems in the WPRD: 
fractured bedrock aquifers and loose rock pore aquifers. Fractured 
bedrock aquifer is mainly distributed in mountainous areas with poor 
water resources. Except for a small area of layered rock fissure water 

Fig. 5. (a) The leveling benchmarks of the three main subsidence areas in Zhuhai. The blue circles (a, b, c, and d) are the locations of the field investigation areas 
correspondingly shown in Fig. 6 (a-d); (b-d) the locally enlarged view and corresponding optical images of the leveling benchmarks in (a); (e-g) the subsidence rate 
maps near P1, P2, and P3, and the blue circles (e, f, g, h, i, and j) are the locations of the field investigation areas correspondingly shown in Fig. 6 (e-j). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Comparison of average subsidence rate between PSI- and leveling- 
measurements.  

Benchmark 
Identifier 

Mean subsidence rate (mm/year) 

Leveling PS Absolute difference 

ZH01  − 8.8  − 9.4  0.6 
ZH02  − 13.9  − 10.8  3.1 
ZH03  − 14.2  − 18.9  4.7  
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whose lithology is sandstone and siltstone in the southern part of the 
study area, the rest are block rock fissure water composed of biotite 
granite. While loose rock pore aquifers are mainly distributed along 
rivers, mountain valleys, and coastal plains, the aquifer is feeble 
confined water and consists of sand, gravel clay, and silty clay, with 
moderate water resources. Groundwater in the study area is mainly 
saltwater and brackish water, and the supply of freshwater is mainly 
derived from surface water. The aquifers are shallow with the depth of 
the water table (old stone well) between 3 and 10 m in general. The 
depth of pumping wells is mainly 20–35 m in Zhuhai and 10–20 m in 
Zhongshan, but there are a small number of wells with a depth varied 
from 40 m to 50 m in Zhuhai (Wang et al., 2019b). 

Groundwater extraction is mainly used in the industrial and aqua-
culture areas, and subsidence in these areas was also observed. As shown 
in Fig. 11, the subsidence is mainly located in dense industrial zones, 
where a large number of factories are clustered, such as factories for 
food, toy, electronics, lighting, furniture, hardware, etc. This shows that 
subsidence may be induced by groundwater pumping for these indus-
trial uses. For example, subsidence rates between − 40 and − 60 mm/ 
year are identified near the Liangang Industrial Zone in Jinwan District 
(Fig. 11a). Fig. 11b is located at Henglan town in Zhongshan city, where 

there are many industrial and aquaculture areas with subsidence rates 
between − 20 and − 30 mm/year. Fig. 11c is located at the Industrial 
Zones in Xinhui District, where many factories are distributed and 
groundwater withdrawal for these factories may cause subsidence dur-
ing the production cycle. The subsidence rates observed here are be-
tween − 30 and − 50 mm/year, with some areas of about − 70 mm/year. 

The intensity map of groundwater extraction is collected from Wang 
et al. (2019b) (Fig. 10c). Groundwater exploitation areas are mainly 
found in large-scale aquaculture lands (indicated by the letters in 
Fig. 10a). It can be shown that the distribution of subsidence and 
groundwater exploitation is mostly similar by contrasting the intensity 
map of groundwater exploitation (Fig. 10c) with the subsidence map 
(Fig. 10a). The subsidence rates increase in areas with high groundwater 
exploitation intensity, such as Doumen and Jinwan districts (Fig. 10a 
and Fig. 10c). Interestingly, it is worth noting that severe subsidence in 
Tanzhou town (Fig. 10a) is relatively high, where high groundwater 
extraction intensity (Fig. 10c) is observed even though the relative 
thickness of soft soil in this area is not large (Fig. 10b). However, the 
groundwater exploitation intensity is high (Fig. 10c) in Banfu town 
(Fig. 10a), but the subsidence is not notable, which may be because of 
low soft soil thickness (Fig. 10b). The association between groundwater 
extraction intensity and subsidence under various soft soil thicknesses 
has been further analyzed to understand the connection between 
groundwater extraction and subsidence (Table 4). It is found that 
groundwater extraction can accelerate land subsidence rate in the case 
of thicker soft soil. Therefore, it is possible to conclude preliminarily that 
soft soil is the main factor for subsidence in the WPRD, and groundwater 
extraction is the major triggering factor. This seems to agree with the 
Gini importance results (Fig. 9) from the RFR. 

5.4. Subsidence vs land-use types 

Comparing the deformation map (Fig. 4a) with the land-use map 
(Fig. 7), it can be observed that aquaculture lands are the most prevalent 
areas for subsidence. Noticeable subsidence is also observed in the urban 
areas, mainly located in the construction areas of the Xiangzhou district 
(Fig. 4a), suggesting that there is an obvious correlation between sub-
sidence and land-use types (Fig. 7). 

A quantitative analysis is carried out to investigate the relationship 
between ground subsidence and land-use types. Areas where land-use 
type remained constant between 2016 and 2021 were selected for 
analysis to exclude the contribution of land-use change to subsidence. 

Fig. 6. The field investigation photos in Zhuhai. (a-b) Wall cracking phenomenon caused by foundation subsidence in Doumen district; (c-d) pavement cracking 
phenomenon caused by subgrade subsidence in Jinwan and Xiangzhou districts; (e-f) the reclamation areas near P1; (g-h) the nearby areas of P2; (i-j) the nearby areas 
of P3. 

Fig. 7. The land-use classification map in the study area derived from Landsat- 
8 images of 2016 and 2021. 
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Fig. 8. Modeled subsidence results of training and validation dataset; (a) training dataset; (b) modeled subsidence rate of training dataset; (c) subsidence rate 
difference map between (a) and (b); (d) subsidence rate difference histogram between (a) and (b); (e) validation dataset; (f) modeled subsidence rate of validation 
dataset; (g) subsidence rate difference between (e) and (f); subsidence rate difference histogram between (e) and (f). 
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The mean subsidence velocities of PS points corresponding to different 
land-uses for different thicknesses of soft soil were calculated (Table S2). 
The water bodies and mangroves are not analyzed because of their low 
coherence properties and small area. It is found that the subsidence rates 
are proportional to soft soil thickness for all land cover classes. Aqua-
culture regions experienced the highest subsidence rate, followed by 

urban territory and agricultural fields, and then bare land and forests 
(Fig. 12a). The results reflect a noticeable trend between the impacts of 
anthropogenic activities on natural systems and the subsidence of 
various land-use types. In natural and undeveloped areas, such as forests 
and bare land, the average subsidence rate is relatively low. The small- 
scale subsidence may be caused by the self-consolidation of soft soil 

Fig. 9. The proportion of factors influencing the subsidence based on the RFR algorithm.  

Fig. 10. (a) The subsidence rate map; (b) The distribution map of soft soil thickness; (c) the groundwater exploitation intensity map; (d) the subsidence rate dis-
tribution histogram at different soil layer thicknesses and non-soft soil; (e) the correlation between the subsidence rate and soft soil thickness at various land- 
use types. 
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(Minderhoud et al., 2018). While regions with more significant 
anthropogenic influence (such as aquaculture areas, urban land, and 
agricultural areas) usually have a higher subsidence rate. The cause of 
subsidence in these areas may be due to the abstraction of groundwater 
for the cultivation of farmland, aquaculture, and the water demand of 
urban residents. In addition, the loading on compressible soft soil also 
causes subsidence in urban territory. Therefore, it can be concluded that 
more anthropogenic activities cause higher subsidence rates. 

5.5. Subsidence vs land-use changes 

The deformation rates for land-use conversion that occurred from 
2016 to 2021 are compared to investigate the connection between the 
change in land cover and subsidence. The land-use changes indicate a 
trend of urban land expansion at the cost of agricultural land. The 
impact of land-use change on land subsidence under different soft soil 

thicknesses was subsequently analyzed (Fig. 12b–f). High land subsi-
dence rate is found in land-use changes with types that demand more 
groundwater withdrawals and urbanization. For example, aquaculture 
and urban areas usually experience more significant subsidence because 
of the increased compaction rate of the aquifer system and surface 
loading. In the thicker soft soil, land cover types converted into aqua-
culture have the maximum subsidence rate, followed by urban and 
agricultural regions. Additionally, the increasing surface displacement 
rate can be found when the land cover types were converted into urban 
areas (Fig. 12c), probably due to densely urbanized areas, intensive 
anthropogenic activities, and surface loading of the compressible de-
posits by artificial buildings, structures, and infrastructure. The 
maximum displacement rate occurs in the case of the aquaculture areas 

Table 3 
Statistical of PSI measurements for various soft soil thicknesses.  

Soft soil 
thickness (m) 

Area 
(km2) 

Mean subsidence rate 
(mm/year) 

Standard deviation 
(mm/year) 

<5  547.6 0 2.9 
5 ~ 10  402.3 − 0.9 4 
10 ~ 20  631.8 − 2.3 5.6 
20 ~ 30  360.5 − 4.4 7.7 
30 ~ 40  174.3 − 11.8 11.5 
>40  22.5 − 18.2 12.3  

Fig. 11. InSAR-derived deformation rate map between 2016 and 2021 in areas where subsidence may be caused by groundwater extraction. (a) Liangang Industrial 
Zone in Jinwan District, Zhuhai city; (b) Henglan town in Zhongshan city; (c) Industrial Zones in Xinhui District, Jiangmen city. 

Table 4 
Statistical subsidence corresponds to groundwater exploitation intensity in 
different soft soil thicknesses.  

Soft soil thickness (m) Mean subsidence rates at different groundwater 
exploitation intensity levels (mm/year) 

Low Middle High 

<5  − 0.2  − 2.0  − 0.8 
5 ~ 10  − 1.7  − 2.6  − 1.6 
10 ~ 20  − 3.1  − 3.3  − 2.2 
20 ~ 30  − 11.2  − 14.3  − 5.4 
30 ~ 40  − 5.9  − 12.9  –22.8 
>40  − 5.1  − 21.5  –22.9  
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were converted into the urban territory, followed by the agriculture 
areas and bare land, with a mean subsidence rate of − 2.5 mm/year, 
− 1.5 mm/year, and − 0.1 mm/year, respectively. Higher subsidence rate 
is observed in new urban land than the old urban area. A relatively low 
subsidence rate was observed in the forest areas (Fig. 12f), probably 
because forest land is less affected by human activities. Thus, it is less 
likely to experience land subsidence in this area. It is worth noting that 
urban land rarely changes into forest in general, and the conversion in 
this case maybe because of the improvement of ecological environment 
quality in local areas, but such area is very small (about 4 km2), as 
shown in the Land-use transition matrix (Table S1). In addition, 
misclassification is also unavoidable over the dark shaded areas caused 
by some vegetation or high buildings, which can easily cause confusion 
between the two classes. The conversion between urban land and bare 
land is possibly due to the demolished and rebuilt of the buildings. The 

conversion of agricultural land into forest may be the implementation of 
returning cropland to planted forest, such as the sloping farmland 
changed into forest (Chen et al., 2021). As for the agricultural land 
changed into bare land, it is likely the results of social and economic 
development, where the converted bare land is mainly used for subse-
quent building construction. 

5.6. Subsidence vs land reclamation 

The blue and red lines shown in Fig. 4a indicate the coastlines of 
WPRD in 1979 and 2020, respectively. Fig. 4a shows that the most 
significant subsidence occurs in the reclamation region connecting the 
Gaolan island. The causes of subsidence in this area were specifically 
analyzed (Fig. 13). According to the field investigation, there is no sig-
nificant construction carried out throughout the observation period. 

Fig. 12. (a) Average subsidence rate of different land-use types at various soft soil thicknesses; (b-f) subsidence rate of different land-use changes between 2016 and 
2021 at various soft soil thicknesses. 
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Therefore, the possibility of surface displacement due to building con-
struction is excluded. At the same time, the region is situated at the 
confluence of the sea and the land, so the soil is mostly muck soil, and 
most soft soils are unconsolidated (Wang et al., 2019b; Zhang et al., 
2021). In addition, Gaolan island was originally a separate island before 
2004 and connected to the mainland by 2015, and it underwent large- 
scale reclamation during this period (Wu et al., 2018; Zhang et al., 
2015). So, the long-time consolidation and compaction of the material 
used for reclamation might have contributed to the subsidence. Recla-
mation time is also a controlling factor on the stability of the ground 
structure, with more recently deposited and unconsolidated sediments 
having higher subsidence rates (Wu et al., 2020; Xu et al., 2016). 
Fig. 13b and c show the subsidence rates along the profile lines A-A’ and 
B-B’ in Fig. 13a. It is found that the ground displacement of the recla-
mation area before 2005 was relatively low. The subsidence rate of the 
reclamation area (after 2005) increases rapidly as it becomes further 
away from the 2005 coastline. This subsidence trend is increasing 
gradually from land to coast. The explanation for this phenomenon is 
that the shorter consolidation time of the landfill material may cause 
greater subsidence (i.e., residual settlement). In summary, geological 
conditions and reclamation are the dominant causes of severe surface 
subsidence. 

5.7. Land subsidence prediction using random forest regression 

The predicted subsidence rate map shows a good agreement with the 
InSAR results with similar spatial patterns (Fig. 8). This suggests that 
most of the spatial variability in the study area observed by InSAR is 
associated with the factors used in subsidence prediction. Fig. 9 shows 
that the most dominating factor affecting the land subsidence in this 
region is the thickness of soft soil, accounting for 42.37 %, followed by 
elevation and groundwater exploitation, accounting for 17.22 % and 
14.07 %, respectively. For the impacts of land-use classes on subsidence, 
the highest score was associated with aquacultural land (6.78 %), fol-
lowed by urban land (5.49 %), and agricultural land (2.13 %). Again, 
aquaculture and agriculture are closely associated with groundwater 
extraction, both of which have a considerable impact on land displace-
ment (Higgins et al., 2013; Yuen et al., 2021). The load of building land 
on the soft soil can also lead to land subsidence (Cui et al., 2015), while 
bare land and forest areas, appear to have negligible effects on subsi-
dence (<1 %). This indicates they contributed little to increased accu-
racy in the model. Therefore, more land-use types may not need to be 

considered when analyzing the relationship between subsidence and 
land-use types in this area. 

In addition, to further confirm the model’s applicability in this area. 
The dataset was divided: 30 % of samples are used for training with the 
remaining 70 % being utilized for validation. The model was trained 
with fewer observations to predict more unknown regions to assess the 
model’s dependability. The results are shown in Fig. 14. The predicted 
subsidence rate map with a resolution of 30 m. The RMSE between the 
InSAR measured and the predicted subsidence rate is 2.9 mm/year (R2 

= 0.579). This combined approach of InSAR and RFR shows the po-
tential to expand the applicability of InSAR with short-wavelength SAR 
data over the decorrelated areas (e.g., vegetated regions). The land 
historical data can be used together with the InSAR-measured obser-
vations to train the subsidence model for ground settlement prediction. 
It is also found that combining the land-use historical data to predict 
subsidence rates, in addition to the land-use during the acquisition 
period, greatly improves prediction results. Therefore, land-use time 
series data with a time span as long as possible is preferred for subsi-
dence rate prediction. The use of land-use history maps to estimate 
subsidence for the entire region provides a possible way for data 
enhancement in decoherent regions and some areas due to the lack of 
data for direct subsidence monitoring. For example, some subsidence 
signals were not detected by InSAR due to decorrelation, but were 
revealed from the prediction results. Since the relationship between 
multiple influencing factors and subsidence is considered, which may 
provide better results and more accurate interpretability than conven-
tional methods that only consider location factors (such as spatial 
interpolation). Three areas were selected for discussion, as shown in 
Fig. 15. Fig. 15a is located in Hengqin District, and there are a lot of 
engineering construction activities that led to decorrelation in the 
InSAR-derived subsidence results. It is observed that the subsidence is 
relatively serious with the subsidence rate of about 40–60 mm/year. It 
can be seen that the predicted result revealed more subsidence signals 
(Fig. 15d), and the subsidence in the construction area can cause large 
social and economic losses, so more attention should be paid to the 
subsidence status in this area. The predicted subsidence signals can be 
used to complement InSAR for the limitation of the spatial coverage of 
subsidence monitoring and provide more subsidence information. 
Moreover, in some regions with few PS points, such as aquaculture and 
agricultural land, where the human engineering activities are relatively 
little. However, heavy groundwater extraction activities, which may 
also lead to subsidence, are expected. As shown in Fig. 15b and c, the 

Fig. 13. (a) Average subsidence rate in the land reclamation area of Gaolan island. The blue, purple, and red lines represent the coastline in 1979, 2005, and 2020. 
The black dotted lines denote the subsidence profile A-A’ and B-B’ in this reclamation area. The subsidence rate along the profile lines (b) A-A’ and (c) B-B’. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 14. (a) InSAR-measured subsidence rate map; (b) the predicted subsidence rate map derived from the RFR model (with 30% of the measurements used as 
training samples); (c) subsidence rate difference map between observations and predictions; (d) subsidence rate difference histogram between observations and 
predictions. 

Fig. 15. (a-c) InSAR results; (d-f) the subsidence prediction results corresponding to (a-c).  
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aquaculture and agricultural land are widely distributed, and the sub-
sidence is relatively serious. Fig. 15b shows that there are few PS points 
detected and the subsidence rate is about 30–50 mm/year. Fig. 15c is 
located in Xinhui District and the subsidence rate in this area is about 
20–40 mm/year. It can be seen from Fig. 10b and c that the thickness of 
soft soil in this area is relatively thick (20–40 m), and the groundwater 
exploitation is relatively intensive, both of which may be the main 
reasons for the serious subsidence. The predicted results in Fig. 15e and f 
show more subsidence signals. However, the predicted results may be 
slightly biased due to the coarser resolution of input data for model 
construction, but these subsidence factors are obvious and the modeled 
results (Fig. 8) showed that it hardly affects the overall spatial pattern of 
subsidence. 

In addition to the spatial pattern, it is possible for the subsidence 
model to provide temporal trends of subsidence. Some studies have 
shown that groundwater exploitation and land use have a time-lag effect 
on land subsidence (Chen et al., 2019; Minderhoud et al., 2018). 
Therefore, based on the subsidence model constructed in this study, it 
may be possible to use existing groundwater and land use data to predict 
the temporal trend of subsidence in the future. 

5.8. Subsidence management and prevention 

According to InSAR-derived subsidence rates and the importance 
assessment of subsidence influence factors in the WPRD, urban con-
struction and subsidence prevention work in this area should mainly be 
carried out from the following aspects. Firstly, large-scale engineering 
construction activities should be avoided as much as possible in areas 
with thick soft soil, and pre-pressure treatment of soft soil foundation 
should be prioritised before engineering construction, or reliable engi-
neering measures should be taken to mitigate the engineering quality 
problems caused by soft soil subsidence. Moreover, subsidence moni-
toring in the soft soil area should be strengthened to monitor the trends 
of subsidence in real-time, so as to provide a scientific basis for the 
management and decision-making of relevant departments and in-
stitutions. Secondly, in order to reduce the exploitation of groundwater 
in the study area, the long-term monitoring of groundwater level should 
be strengthened in the aquaculture area, and the exploitation of 
groundwater should be strictly controlled. Finally, this study shows an 
obvious correlation between land cover types and subsidence, which can 
be used to guide sustainable land use in the WPRD. For example, 
reducing the conversion of other land cover types to buildings and 
aquaculture land, and promoting conversion to land cover types less 
susceptible to subsidence. In addition, spatial subsidence assessment can 
also help to provide a comprehensive understanding of the subsidence 
status and formulate policies and plans for subsidence mitigation 
measures. 

6. Conclusion 

Based on the time-series InSAR techniques, sixty-seven Sentinal-1 
images are applied to monitor the land subsidence of the WPRD between 
2016 and 2021. The overall subsidence rates of the WPRD range from 
− 70 to 10 mm/year. Three subsidence bowls were identified in this 
region, located on the Gaolan island of Zhuhai city, the junction of 
Zhuhai and Zhongshan, and the junction of Zhongshan and Jiangmen 
respectively. Obvious correlation between subsidence and Quaternary 
soft soil has been observed. It is observed that the thickness of the soft 
soil is directly proportional to the subsidence rate. This reveals that soft 
soil consolidation is the primary contributing factor to surface 
displacement. Land subsidence is also found to be greatly affected by the 
intensity of groundwater exploitation, and groundwater exploitation 
can accelerate land settlement. 

The comparison between the subsidence rate and land-use data 
suggests that the most significant subsidence was observed in the 
aquaculture, followed by urban land and agricultural land, and finally, 

bare land and forests. For all of the land-use types that were transformed 
into urban land, the maximum subsidence rate was observed with 
aquaculture to urban, followed by the agricultural land to urban and 
bare land to urban. Moreover, severe subsidence is found in the recla-
mation area. The effect of consolidation and residual subsidence is ex-
pected to be stronger in the new reclamation land, and hence larger 
subsidence may be expected. At last, the RFR method with an RMSE of 
2.7 mm/year reveals the potential to estimate land subsidence by soft 
soil thickness, groundwater exploitation, land-use history, elevation, 
and strata lithology. The results show that the predicted displacement 
velocities are relatively consistent with the surface deformation derived 
by InSAR. The soft soil thickness has the strongest relationship with land 
subsidence. The land-use classes that affect the subsidence are mainly 
aquaculture, urban land, and agricultural land. 

In general, a variety of causes influence land subsidence in the 
WPRD. The distribution of soft soil is expected to be the main subsidence 
factor, while human activities can trigger and accelerate land subsi-
dence. Subsidence in the WPRD is expected to continue if no measures 
are taken to mitigate it. Hence the findings could serve as a guide for 
urban construction and land-use planning in the WPRD. 
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